Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.119
Filter
1.
J Photochem Photobiol B ; 255: 112910, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38663337

ABSTRACT

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.

2.
Microvasc Res ; : 104684, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663724

ABSTRACT

The endothelial glycocalyx (EG) undergoes early degradation in sepsis. Our recent work introduced a novel therapeutic approach involving liposomal nanocarriers of preassembled glycocalyx (LNPG) to restore EG in lipopolysaccharide (LPS)-induced sepsis model of mice. While short-term effects were promising, this study focuses on the long-term impact of LNPG on mouse cerebral microcirculation. Utilizing cranial window, we assessed the stability of vascular density (VD) and perfused boundary region (PBR), an index of EG thickness, over a five-day period in normal control mice. In septic groups (LPS, LPS + 1-dose LNPG, and LPS + 2-dose LNPG), the exposure of mice to LPS significantly reduced VD and increased PBR within 3 h. Without LNPG treatment, PBR returned to the normal control level by endogenous processes at 48 h, associated with the recovery of VD to the baseline level at 72 h. However, mice receiving LNPG treatment significantly reduced the increment of PBR at 3 h. The therapeutic effect of 1-dose LNPG persisted for 6 h while the 2-dose LNPG treatment further reduced PBR and significantly increased VD at 12 h compared to LPS group. This study provides valuable insights into the potential therapeutic benefits of LNPG in mitigating EG degradation in sepsis.

3.
Chem Biol Interact ; : 111015, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663797

ABSTRACT

Hepatic fibrosis is a complex chronic liver disease in which both macrophages and hepatic stellate cells (HSCs) play important roles. Many studies have shown that clodronate liposomes (CLD-lipos) effectively deplete macrophages. However, no liposomes have been developed that target both HSCs and macrophages. This study aimed to evaluate the therapeutic efficacy of lipopolysaccharide-coupled clodronate liposomes (LPS-CLD-lipos) and the effects of liposomes size on hepatic fibrosis. Three rat models of hepatic fibrosis were established in vivo; diethylnitrosamine (DEN), bile duct ligation (BDL), and carbon tetrachloride (CCl4). Hematoxylin and eosin staining and serological liver function indices were used to analyze pathological liver damage. Masson's trichrome and Sirius red staining were used to evaluate the effect of liposomes on liver collagen fibers. The hydroxyproline content in liver tissues was determined. In vitro cell counting kit-8 (CCK-8) and immunofluorescence assays were used to further explore the effects of LPS modification and liposomes size on the killing of macrophages and HSCs. Both in vitro and in vivo experiments showed that 200 nm LPS-CLD-lipos significantly inhibited hepatic fibrosis and the abnormal deposition of collagen fibers in the liver and improved the related indicators of liver function. Further results showed that 200 nm LPS-CLD-lipos increased the clearance of macrophages and induced apoptosis of hepatic stellate cells, significantly. The present study demonstrated that 200 nm LPS-CLD-lipos could significantly inhibit hepatic fibrosis and improve liver function-related indices and this study may provide novel ideas and directions for hepatic fibrosis treatment.

4.
Int J Nanomedicine ; 19: 3513-3536, 2024.
Article in English | MEDLINE | ID: mdl-38623081

ABSTRACT

Purpose: Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods: Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results: The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion: Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.


Subject(s)
Eye Diseases , Imidazoles , Liposomes , Piperazines , Humans , Liposomes/pharmacology , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Microfluidics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/pharmacology , Apoptosis
5.
Int J Pharm ; 657: 124136, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642621

ABSTRACT

Increasing prevalence of infected and chronic wounds demands improved therapy options. In this work an electrospun nanofiber dressing with liposomes is suggested, focusing on the dressing's ability to support tissue regeneration and infection control. Chloramphenicol (CAM) was the chosen antibiotic, added to the nanofibers after first embedded in liposomes to maintain a sustained drug release. Nanofibers spun from five different polymer blends were tested, where pectin and polyethylene oxide (PEO) was identified as the most promising polymer blend, showing superior fiber formation and tensile strength. The wire-electrospinning setup (WES) was selected for its pilot-scale features, and water was applied as the only solvent for green electrospinning and to allow direct liposome incorporation. CAM-liposomes were added to Pectin-PEO nanofibers in the next step. Confocal imaging of rhodamine-labelled liposomes indicated intact liposomes in the fibers after electrospinning. This was supported by the observed in vitroCAM-release, showing that Pectin-PEO-nanofibers with CAM-liposomes had a delayed drug release compared to controls. Biological testing confirmed the antimicrobial efficacy of CAM and good biocompatibility of all CAM-nanofibers. The successful fiber formation and green production process with WES gives a promising outlook for industrial upscaling.

6.
Int J Pharm ; 657: 124147, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657715

ABSTRACT

The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering. All three LeciPlex® systems exhibited a direct relationship between particle size and phospholipid concentration. The two categoric variables, solvent, and stabilizer used to prepare LeciPlex® demonstrated a significant effect on particle size for all three LeciPlex® systems. Small angle neutron scattering, and optical transmittance confirmed the formation of micellar systems at a phospholipid: stabilizer ratio of 1:2 and vesicular systems at a ratio of 2:1 for the systems stabilized with anionic and nonionic surfactants. In contrast to this, the LeciPlex® formed with the cationic stabilizer Dioctadecyldimethylammonium bromide (DODAB), formed vesicles at both ratios. From these investigations, it was clear that the formulation space for LeciPlex® was diversified by the addition of cationic, anionic, and non-ionic stabilizers.

7.
Health Sci Rep ; 7(4): e2065, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38660006

ABSTRACT

Background and Aim: The traditional drug delivery approach involves systemic administration of a drug that could be nonspecific in targeting, low on efficacy, and with severe side-effects. To address such challenges, the field of smart drug delivery has emerged aiming at designing and developing delivery systems that can target specific cells, tissues, and organs and have minimal off-target side-effects. Methods: A literature search was done to collate papers and reports about the currently available various strategies for smart nano-inspired drug delivery. The databases searched were PubMed, Scopus, and Google Scholar. Based on selection criteria, the most pertinent and recent items were included. Results: Smart drug delivery is a cutting-edge revolutionary intervention in modern medicines to ensure effective and safe administration of therapeutics to target sites. These hold great promise for targeted and controlled delivery of therapeutic agents to improve the efficacy with reduced side-effects as compared to the conventional drug delivery approaches. Current smart drug delivery approaches include nanoparticles, liposomes, micelles, and hydrogels, each with its own advantages and limitations. The success of these delivery systems lies in engineering and designing them, and optimizing their pharmacokinetics and pharmacodynamics properties. Conclusion: Development of drug delivery systems that can get beyond various physiological and clinical barriers, as observed in conventionally administered chemotherapeutics, has been possible through recent advancements. Using multifunctional targeting methodologies, smart drug delivery tries to localize therapy to the target location, reduces cytotoxicity, and improves the therapeutic index. Rapid advancements in research and development in smart drug delivery provide wider and more promising avenues to guarantee a better healthcare system, improve patient outcomes, and achieve higher levels of effective medical interventions like personalized medicine.

8.
Int J Pharm ; 657: 124144, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38653342

ABSTRACT

New drugs and technologies are continuously developed to improve the efficacy and minimize the critical side effects of cancer treatments. The present investigation focuses on the development of a liposomal formulation for Idelalisib, a small-molecule kinase inhibitor approved for the treatment of lymphoid malignancies. Idelalisib is a potent and selective antitumor agent, but it is not indicated nor recommended for first-line treatment due to fatal and serious toxicities. Herein, liposomes are proposed as a delivery tool to improve the therapeutic profile of Idelalisib. Specifically, PEGylated liposomes were prepared, and their physicochemical and technological features were investigated. Light-scattering spectroscopy and cryo-transmission electron microscopy revealed nanosized unilamellar vesicles, which were proved to be stable in storage and in simulated biological fluids. The cytotoxicity of the liposome formulation was investigated in a human non-Hodgkin's lymphoma B cell line. Idelalisib was able to induce death of tumor cells if delivered by the nanocarrier system at increased efficacy. These findings suggest that combining Idelalisib and nanotechnologies may be a powerful strategy to increase the antitumor efficacy of the drug.

9.
Antibiotics (Basel) ; 13(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38666994

ABSTRACT

Biofilms are surface-associated microbial communities embedded in a matrix that is almost impenetrable to antibiotics, thus constituting a critical health threat. Biofilm formation on the cornea or ocular devices can lead to serious and difficult-to-treat infections. Nowadays, natural molecules with antimicrobial activity and liposome-based delivery systems are proposed as anti-biofilm candidates. In this study, the anti-biofilm activity of a formulation containing citrus polyphenols encapsulated in liposomes was evaluated against Staphylococcus aureus and Staphylococcus epidermidis, the most common agents in ocular infections. The formulation activity against planktonic staphylococci was tested by broth microdilution and sub-inhibitory concentrations were used to evaluate the effect on biofilm formation using the crystal violet (CV) assay. The eradicating effect of the preparation on mature biofilms was investigated by the CV assay, plate count, and confocal laser scanning microscopy. The product was bactericidal against staphylococci at a dilution of 1:2 or 1:4 and able to reduce biofilm formation even if diluted at 1:64. The formulation also had the ability to reduce the biomass of mature biofilms without affecting the number of cells, suggesting activity on the extracellular matrix. Overall, our results support the application of the used liposome-encapsulated polyphenols as an anti-biofilm strategy to counter biofilm-associated ocular infections.

10.
Gels ; 10(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38667703

ABSTRACT

Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.

11.
J Fungi (Basel) ; 10(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667949

ABSTRACT

Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.

12.
Nanomaterials (Basel) ; 14(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668173

ABSTRACT

This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing Mg0.75Ca0.25Fe2O4 nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic components were characterized regarding their structural, morphological, magnetic and photothermal properties. The magnetic nanoparticles display a cubic shape and a size (major axis) of 37 ± 3 nm, while the longitudinal and transverse sizes of the nanorods are 46 ± 7 nm and 12 ± 1.6 nm, respectively. A new methodology was employed to couple the magnetic and plasmonic nanostructures, using cysteine as bridge. The potential for photothermia was evaluated for the magnetic nanoparticles, gold nanorods and the coupled magnetic/plasmonic nanoparticles, which demonstrated a maximum temperature variation of 28.9 °C, 33.6 °C and 37.2 °C, respectively, during a 30 min NIR-laser irradiation of 1 mg/mL dispersions. Using fluorescence anisotropy studies, a phase transition temperature (Tm) of 35 °C was estimated for MPELs, which ensures an enhanced fluidity crucial for effective crossing of the skin layers. The photothermal potential of this novel nanostructure corresponds to a specific absorption rate (SAR) of 616.9 W/g and a maximum temperature increase of 33.5 °C. These findings point to the development of thermoelastic nanocarriers with suitable features to act as photothermal hyperthermia agents.

13.
ADMET DMPK ; 12(1): 63-105, 2024.
Article in English | MEDLINE | ID: mdl-38560713

ABSTRACT

Background and Purpose: The blood-brain barrier (BBB), a critical interface of specialized endothelial cells, plays a pivotal role in regulating molecular and ion transport between the central nervous system (CNS) and systemic circulation. Experimental Approach: This review aims to delve into the intricate architecture and functions of the BBB while addressing challenges associated with delivering therapeutics to the brain. Historical milestones and contemporary insights underscore the BBB's significance in protecting the CNS. Key Results: Innovative approaches for enhanced drug transport include intranasal delivery exploiting olfactory and trigeminal pathways, as well as techniques like temporary BBB opening through chemicals, receptors, or focused ultrasound. These avenues hold the potential to reshape conventional drug delivery paradigms and address the limitations posed by the BBB's selectivity. Conclusion: This review underscores the vital role of the BBB in maintaining CNS health and emphasizes the importance of effective drug delivery through this barrier. Nanoparticles emerge as promising candidates to overcome BBB limitations and potentially revolutionize the treatment of CNS disorders. As research progresses, the application of nanomaterials shows immense potential for advancing neurological therapeutics, albeit with careful consideration of safety aspects.

14.
ACS Synth Biol ; 13(4): 1355-1364, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38569139

ABSTRACT

Adenosine triphosphate (ATP)-producing modules energized by light-driven proton pumps are powerful tools for the bottom-up assembly of artificial cell-like systems. However, the maximum efficiency of such modules is prohibited by the random orientation of the proton pumps during the reconstitution process into lipid-surrounded nanocontainers. Here, we overcome this limitation using a versatile approach to uniformly orient the light-driven proton pump proteorhodopsin (pR) in liposomes. pR is post-translationally either covalently or noncovalently coupled to a membrane-impermeable protein domain guiding orientation during insertion into preformed liposomes. In the second scenario, we developed a novel bifunctional linker, trisNTA-SpyTag, that allows for the reversible connection of any SpyCatcher-containing protein and a HisTag-carrying protein. The desired protein orientations are verified by monitoring vectorial proton pumping and membrane potential generation. In conjunction with ATP synthase, highly efficient ATP production is energized by the inwardly pumping population. In comparison to other light-driven ATP-producing modules, the uniform orientation allows for maximal rates at economical protein concentrations. The presented technology is highly customizable and not limited to light-driven proton pumps but applicable to many membrane proteins and offers a general approach to overcome orientation mismatch during membrane reconstitution, requiring little to no genetic modification of the protein of interest.


Subject(s)
Adenosine Triphosphate , Liposomes , Liposomes/metabolism , Adenosine Triphosphate/metabolism , Light , Proton Pumps/metabolism , Membrane Proteins/metabolism
15.
ACS Appl Bio Mater ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613498

ABSTRACT

Lipidic nanoparticles have undergone extensive research toward the exploration of their diverse therapeutic applications. Although several liposomal formulations are in the clinic (e.g., DOXIL) for cancer therapy, there are many challenges associated with traditional liposomes. To address these issues, modifications in liposomal structure and further functionalization are desirable, leading to the emergence of solid lipid nanoparticles and the more recent liquid lipid nanoparticles. In this context, "cubosomes", third-generation lipidic nanocarriers, have attracted significant attention due to their numerous advantages, including their porous structure, structural adaptability, high encapsulation efficiency resulting from their extensive internal surface area, enhanced stability, and biocompatibility. Cubosomes offer the potential for both enhanced cellular uptake and controlled release of encapsulated payloads. Beyond cancer therapy, cubosomes have demonstrated effectiveness in wound healing, antibacterial treatments, and various dermatological applications. In this review, the authors provide an overview of the evolution of lipidic nanocarriers, spanning from conventional liposomes to solid lipid nanoparticles, with a special emphasis on the development and application of cubosomes. Additionally, it delves into recent applications and preclinical trials associated with cubosome formulations, which could be of significant interest to readers from backgrounds in nanomedicine and clinicians.

16.
AAPS PharmSciTech ; 25(4): 73, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575825

ABSTRACT

The focus of the research was to overcome the limitations of metoclopramide (MTC) when administered intranasally. The aim was to improve its bioavailability, increase patient compliance, and prolong its residence time in the nasal cavity. MTC-loaded liposomes were prepared by applying the film hydration method. A study was conducted to determine how formulation variables affected encapsulation efficiency (EE %), mean particle size (MPS), and zeta potential (ZP). The MTC-liposomes were further loaded into the in situ gel (gellan gum) for longer residence times following intranasal administration. pH, gelling time, and in vitro release tests were conducted on the formulations produced. In vivo performance of the MTC-loaded in situ gels was appraised based on disparate parameters such as plasma peak concentration, plasma peak time, and elimination coefficient compared to intravenous administration. When the optimal liposome formulation contained 1.98% of SPC, 0.081% of cholesterol, 97.84% of chloroform, and 0.1% of MTC, the EE of MTC was 83.21%, PS was 107.3 nm. After 5 h, more than 80% of the drug was released from MTC-loaded liposome incorporated into gellan gum in situ gel formulation (Lip-GG), which exhibited improved absorption and higher bioavailability compared to MTC loaded into gellan gum in situ gel (MTC-GG). Acceptable cell viability was also achieved. It was found out that MTC-loaded liposomal in situ gel formulations administered through the nasal route could be a better choice than other options due to its ease of administration, accurate dosing, and higher bioavailability in comparison with MTC-GG.


Subject(s)
Liposomes , Metoclopramide , Rabbits , Humans , Animals , Biological Availability , Administration, Intranasal , Nausea , Lipids , Gels , Particle Size , Drug Delivery Systems
17.
Biomed Pharmacother ; 174: 116586, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38626516

ABSTRACT

Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.

18.
J Microencapsul ; 41(3): 226-254, 2024 May.
Article in English | MEDLINE | ID: mdl-38560994

ABSTRACT

Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.


LBNPs are tiny artificial particles made of lipids using different formulation methods. They are powerful and versatile delivery platforms with great potential as anticancer therapies. LBNPs have been tested in clinical applications and can safely deliver anticancer agents, including vaccine payloads designed to target various cancer types.LBNPs' size, surface charge, and targeting ligands can be modified during formulation, and they can be administered to specific tissues via various routes. LBNPs can target tumours and release their payload via active, passive, or stimuli-responsive mechanisms.Active targeting requires surface modification in order to target and deliver their payload, while passive targeting do not. Stimuli-responsive release mechanisms move to the tumour microenvironment and release their payload upon an internal or external stimulus.There are several challenges faced by LBNPs in delivering cancer drugs and vaccines, but advanced research methods have opened new doors vital for expanding their applications in clinical oncology.LBNPs offer the advantage of enhanced drug stability and bioavailability, prolonged circulation time of therapeutic agents in the bloodstream, and improved efficacy in targeting cancerous tissues.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Drug Delivery Systems , Neoplasms/drug therapy , Nanoparticles/chemistry , Lipids
19.
Article in English | MEDLINE | ID: mdl-38566387

ABSTRACT

The current global epidemic of hypertension is not a disease in and of itself but rather a significant risk factor for serious cardiovascular conditions such as peripheral artery disease, heart failure, myocardial infarction, and stroke. Although many medications that work through various mechanisms of action are available on the market in conventional formulations to treat hypertension, these medications face significant difficulties with their bioavailability, dosing, and associated side effects, which significantly reduces the effectiveness of their therapeutic interventions. Numerous studies have shown that nanocarriers and nanoformulations can minimize the toxicity associated with high doses of the drug while greatly increasing the drug's bioavailability and reducing the frequency of dosing.

This review sheds light on the difficulties posed by traditional antihypertensive formulations and highlights the necessity of oral nanoparticulate systems to solve these issues. Because hypertension has a circadian blood pressure pattern, chronotherapeutics can be very important in treating the condition. On the other hand, nanoparticulate systems can be very important in managing hypertension.

20.
Acta Pharm Sin B ; 14(4): 1827-1844, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572103

ABSTRACT

In the treatment of central nervous system disease, the blood-brain barrier (BBB) is a major obstruction to drug delivery that must be overcome. In this study, we propose a brain-targeted delivery strategy based on selective opening of the BBB. This strategy allows some simple bare nanoparticles to enter the brain when mixed with special opening material; however, the BBB still maintains the ability to completely block molecules from passing through. Based on the screening of BBB opening and matrix delivery materials, we determined that phospholipase A2-catalyzed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine liposomes can efficiently carry drugs into the brain immediately. At an effective dose, this delivery system is safe, especially with its effect on the BBB being reversible. This mix & act delivery system has a simple structure and rapid preparation, making it a strong potential candidate for drug delivery across the BBB.

SELECTION OF CITATIONS
SEARCH DETAIL
...